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Abstract. Complex Automata were recently proposed as a paradigm to
model multi-scale complex systems. The concept is formalized and the
scale separation map is further investigated in relation with its capability
to specify the components of Complex Automata. Five classes of scale
separation are identified, each potentially giving rise to a specific multi-
scale modeling paradigm. A number of canonical examples are briefly
discussed.
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1 Introduction

Complex Automata (CxA) were recently proposed as a paradigm to model multi-
scale complex systems [1]. The key idea is that a multi-scale system can be
decomposed into N single-scale Cellular Automata (CA) that mutually interact
across the scales. The decomposition is achieved by building a scale map on
which each system can be represented as an area according to its spatial and
temporal scales. Processes having well separated scales are easily identified as
the components of the multi-scale model.

In this contribution we further elaborate on the CxA framework by first
providing a formal definition. Next, we investigate in some detail the concept of
the scale separation map, by taking into account the temporal and spatial scales
that are covered by a single CA. We thus identify 5 classes of scale separation,
each potentially giving rise to specific multi-scale modeling paradigms.

To illustrate our framework we discuss a number of canonical examples,
demonstrating how to formulate them as a CxA, how the decomposition into
a number of single scale CAs can be obtained, and how these systems are char-
acterized by their mutual positions on the scale separation map.
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2 Complex Automata Modeling

2.1 Definition

A CxA is a collection of interacting CA. We refer the reader to standard text-
books for a complete definition of a CA [2]. Here we shall define a CA as a
tuple

C =< A(∆x,∆t, L, T ), S, R,G, F > (1)

where A is the spatial domain. It is made of cells of size ∆x and it spans a region
of size L. The quantity ∆t is the time step and T is the number of iterations
during which the CA will be run. Therefore, processes with time scales between
∆t and T can be represented and spatial scales ranging from ∆x to L can be
resolved.

We call S the set of all possible states of each cell and R the evolution rule.
G is the topology describing the neighborhood relation.

At the boundaries of A, additional information is needed (boundary con-
ditions). We define F as the flux of information exchanged at each iteration
between the system and its environment.

From definition 1 we can define a CxA as a graph X = (V, E) where V is the
set of vertices and E the set of edges with the following properties

– Each vertex is a CA Ci =< Ai(∆xi,∆ti, Li, Ti), Si, Ri, Gi, Fi >
– each edge Eij is a coupling procedure describing the interaction between Ci

and Cj . In practice, Eij will define how information is exchanged between
the two subsystems.

During the initialization phase, this graph is built according to the modeler
specifications.

2.2 Execution model

Each vertex (subsystem) knows its time step with respect to the global time as
well as it spatial location within the whole computational domain. This knowl-
edge is in part given by ∆xi and ∆ti

Edges mediate an asynchronous communication between the vertices they
connect. The main idea is that data from one CA that need to be known by
another is written in the link that connects them, as soon as it is available.
Similarly, when the recipient CA needs new input information from its neighbors,
it reads it from the link. If this information is not yet available, the CA has to
wait. In this way one achieves a decentralized, asynchronous communication
model, which is compatible with parallelization or distributed computing.

The format under which this information is exchanged depends on the type
of coupling. Yet, clearly, a conceptual model is needed to find a generic way of
exchanging information (with little programming from the users), or to have a
simple model to program these links. Smart edges (i.e. edges with computing
and communication capabilities) should result from this information exchange
procedure.
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2.3 Genericity of CA’s

The fact that each CA (vertex of the CxA) has a common instruction flow
(because it is a CA) gives a way to implement generic coupling mechanisms and
achieve the above proposed execution model.

A generic CA can be programmed using the propagation-collision paradigm
instead of the gather-update paradigm. In this approach, the following steps
implement all possible CA’s

procedure executeCA
for time t1 to t2, by step dt

forall cells
propagation
computeBoundary
collision

end forall
end for

end procedure

Here we assume that all submodels will be cast in this structure, which is possible
if the model complies with the CA definition. Clearly, a lattice Boltzmann (LB)[3]
model fulfills this requirement. In an agent based model, the same fundamental
operations are also performed with cells replaced by agents. The propagation
procedure sends the local states of each cell to the neighbors that need it. So, the
propagation operator assumes an underlying topology of interconnection. In an
agent based model, a special agent can be defined as a centralized information
repository.

The data structure is a set of cells or agents which is traversed in any order
because all the above operation are, in nature, parallel operations.

The computeBoundary procedure is needed to specify the values of the vari-
able that are defined by the external environment. In the case of a LB fluid
simulation, the missing density distributions at the wall that are computed in
this procedure.

Collision is the procedure in which the evolution rule is executed for each
cell, using the cell values obtained from propagation and computeBoundary.

2.4 Coupling mechanisms

In the literature, several ways of coupling have been identified. From reference [4],
we have

– Sub-Domain coupling (SDC), called domain decomposition in [4]
– Hierarchical-Model coupling (HMC), called heterogenous modeling method

(HMM) in [4].

In the SDC adjacent spatial domains are described by different models on space-
time grids of possible different resolution. Note that the two adjacent subdomains
can possibly overlap.
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In HMC, some parameters or variables of a main model (e.g. the CA rule,
collision operators) are first computed locally (i.e for some selected cells) on the
fly by a finer scale model.

The above SDC and HMC coupling mechanisms can be easily incorporated
in the flow structure of executeCA, in agreement with the concept of smart edges
connecting the CA’s together.

For instance, the propagation step produces information that is sent to
neighboring spatial cells, possibly those belonging a another CA. In case of SDC
(subdomain coupling) the outgoing information from the boundary of one system
is exaclty what is needed by the adjacent subdomain. Thus propagation has to
write the adequate information in the edge interconnecting the two sub-models.
Similarly, the procedure computeBoundary will read the missing information
from the corresponding edge.

The HMC (hierarchical model coupling) is typically affecting the collision
procedure by giving the value of a parameter needed by the collision rule and
which is computed by a subscale model. For instance, this parameter could be
a threshold on the blood shear stress that will lead to blood clotting. Such
a threshold would typically result from the own dynamics of the cells in the
endothelium.

3 The Scale Separation Map

The Scale Separation Map (SSM) is defined as a two dimensional map with the
horizontal axis coding for temporal scales and the vertical axis coding for spatial
scales. Each subsystem occupies a certain area on this map. Fig. 1 shows an
example of such SSM, in which three subsystems have been identified. Subsystem
1 operates on small spatial scales, and short time scales, process 2 at intermediate
scales, and process three at large scales. This could e.g. be processes operating
at the micro-, meso-, and macro scale.
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Fig. 1. A scale map, showing three sub-
systems and their mutual couplings.
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Fig. 2. Interaction regions on the scale
map.

Consider two processes A and B with their own specific spatial - and tempo-
ral scale, denoted by ξi and τi respectively (i ∈ {A,B}). Assume that A has the
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largest spatial scale. In case the spatial scales are the same, A has the largest
temporal scale. In other words, (ξB < ξA) OR (ξB = ξA AND τB < τA).
We can now place A on the scale map and then investigate the different possi-
bilities of placing B on the map relative to A. This will lead to a classification
of types of multi-scale coupling, as in Fig. 2.
Depending on where B is, we find the following regions:

Region 0: A and B overlap, so we do not have a scale separation, we are
dealing here with a single-scale multi-science model.

Region 1: Here ξB = ξA AND τB < τA, so we observe a separation of
time scales at the same spatial scale.

Region 2: Here ξB < ξA AND τB = τA, so we observe a separation in
spatial scales, like coarse and fine structures on the same temporal scale.

Region 3: Separation in time - and spatial scales. Region 3.1 is the well-
known micro ⇔ macro coupling, so fast processes on a small spatial scale
coupled to slow processes on a large spatial scale. This type of multi-scale
model has received most attention in the literature, and the SDC and
HMC coupling paradigms explained earlier have mostly been applied in
this region. In region 3.2 we have the reversed situation, a slow process
on small spatial scales coupled to a fast process on large spatial scales.
We believe that this region is very relevant in for instance coupling of
biological with physical processes, where the biological process is e.g. the
slow response of cells to a faster physical process on a larger scale (e.g.
blood flow in arteries).

Note that we do not have to consider other regions of the scale map, because
then the role of A and B just reverses, and we fall back to one of the five cases
identified above.

Next we address the question of the area that process A and B occupy
on the scale map, and from that, how to quantify the regions 0 − 3 on the
scale map. As discussed earlier, a single scale CA is characterized by a spatial
discretization ∆x and a system size L, where ∆x < ξ < L. The number of CA
cells in the full domain is then N (x) = L/∆x. We introduce δ(x) and η(x) so that
the relevant spatial scale ξ is represented by 10δ(x)

cells (i.e. ∆x = ξ/10δ(x)
) and

the spatial extension of the CA is 10η(x)
times the spatial scale, i.e. L = ξ10η(x)

,
and therefore N (x) = 10η(x)+δ(x)

. Likewise for the temporal domain, i.e. a single
scale CA has a time step ∆t and the CA is simulated over a time span T , and
we have ∆t < τ < T . The number of time steps N (t) = T/∆t. The discretization
has been chosen such that the temporal scale is represented by 10δ(t)

time steps
(i.e. ∆t = τ/10δ(t)

) and that simulation time of the CA is 10η(t)
times the spatial

scale, i.e. T = τ10η(t)
and N (t) = 10η(t)+δ(t)

.
A process’ position on the scale map is now fully determined by the tuple

{ξ, δ(x), η(x); τ, δ(t), η(t)}, and is drawn in Fig. 3, where the axes are now on
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a logarithmic scale. On such logarithmic SSM the process is rectangular with
area (δ(t) + η(t)) × (δ(x) + η(x)) asymmetrically centered around the point
(log(τ), log(ξ)).
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Fig. 3. Position of a process with
parameters {ξ, δ(x), η(x); τ, δ(t), η(t)} on
the logarithmic scale map.

Fig. 4. Interaction regions on the log-
arithmic scale map, in more detail.

In the special case that δ(x) = η(x) = δ(t) = η(t) = 1 (a reasonable first
order assumption) we see that the process is symmetrically centered around
(log(τ), log(ξ)) and that the size of the box extends 2 decades in each dimension.

In Fig. 4 we show the extension of Fig. 2, where regions 1− 3 now have well
defined positions and size. Depending on the location of process B, that is the
point (log(τB), log(ξB)) on the SMM, and with all information on the spatial and
temporal extensions of process A and B, we can unambiguously find in which
region of the scale map they are located with respect to each other.

Consider once more region 3. In region 3.1 we find that LB < ∆xA and
TB < ∆tA. As said earlier, this is the classical micro ⇔ macro coupling, and in
our language this means the full spatio-temporal extend TB × LB of process B
is smaller than one single spatio-temporal step ∆tA ×∆xA of process A.

Region 3.2 also exhibits separation of time and length scales, but now the
situation is quite different. We find that, just like in region 3.1, LB < ∆xA. So,
the spatial extend of process B is smaller than the grid spacing of process A.
However, now we find that TA < ∆tB . In other words, the full time scale of
process A is smaller then the time step in process B. This will result in other
modeling and simulation paradigms than in region 3.1. Typically, the coupling
between A and B will involve time averages of the dynamics of the fast process
A.

Let us now turn our attention to the regions where there is overlap on the
temporal - or spatial scales, or both (regions 0, 1, and 2, in Fig. 4). In all these
cases we can argue that we have partial or full overlap of the scales, giving
rise to different types of (multi-scale) modeling and simulation. We say that
the scales fully overlap if the point (log(τB), log(ξB)) falls within (one of) the
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scales spanned by process A. On the other hand, there is partial overlap if
(log(τB), log(ξB)) falls outside (one of) the scales spanned by process A, but the
rectangular area of process B still overlaps with (one of) the scales spanned by
process A. The region of partial scale overlap can also be considered as a region of
gradual scale separation, a boundary region between the scale separated regions
1, 2 and 3 and region 0. Simulations of this kind of multi-scale system would
typically involve CxA’s with local grid refinements, or multiple time stepping
approaches, or a combination of both. We save this more detailed discussion for
a future publication.

4 Examples

In this section we briefly indicate how some problems can be expressed as a CxA,
with the benefit of code reusability, modeling flexibility and design efficiency.

4.1 Grid refinement

The problem of grid refinement in LB fluid simulations is important in order to
resolve small spatial scales, for instance around boundaries. The two subdomains
C and F are the regions where a coarse and fine grid are defined, respectively.
Such a situation is described in more detail in [5]. The two regions are updated
by applying a LB (i.e a CA) dynamics such as executeCA. In addition, they
interact because C and F have a common spatial interface, at the boundary
between the two regions. Thus, the coupling is of SCD type. The CxA edge
connecting the two submodels consists of transfering the information for the
cells at the interface, from one grid to the other. In grid refinement the grid
spacing is typically refined by some small number (say 2 or 4), and the timestep
is scaled accordingly. So, in the language of the SSM, processes C and F will
have partially overlapping spatial and temporal scales.

Typically, the edge will collect the data from grid C, rescale it, then perform
a space and time interpolation in order to provide grid F with a data set at scales
∆xF and ∆tF . Similarly, the same edge will also translate the data produced by
F to the requirement of grid C.

From the point of view of grids C and F the coupling is achieved simply
by writing and reading the specific buffers managed by the edge, thus fully
decoupling the model part from its interaction with other system components.

4.2 Time splitting in Reaction-Diffusion

Time splitting has been introduced in LB models for reaction-diffusion [6] in
order to deal with a wide range of reaction and diffusion constants in the same
simulation. The idea is to consider diffusion as a first, larger scale model. Re-
action acts between the diffusion steps, at each spatial cell, with a finer time
resolution than the diffusion process. The reaction process is modeled as an im-
plicit solver for a local differential equation. So we have here a HMC type of
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coupling. In this case, the subsystem coupling edge simply consists in reading
the input chemical concentrations given by the diffusion process and pass them
to the reaction solver. The new concentrations are then written back to the cell
for the next diffusion step. Depending on the characteristic time scales of the
diffusion (specified by the diffusion constants) and the reactions (specified by
the rate constants), the CxA is has fully separated time scales (region 1 on the
SMM), or the time scales are partially overlapping.
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Fig. 5. A SSM for in stent re-stenosis.

4.3 In-Stent Restenosis

Within the EU funded COAST project [7] we have chosen the treatment and
progression of coronary artery disease as a prototypical multi-scale multi-science
complex system to be modeled within the CxA framework. We will address
the adverse vessel wall remodelling (re-stenosis), which occurs in some patients
after placement of a metal frame (stent) within the artery lumen to expand and
support the vessel at the site of a stenosis. This restenosis is due to the growth of
scar tissue in between the strut of the stent, which tends to block the lumen. A
full description of this application is beyond the scope of this manuscript. Here, it
serves as an illustrative example of how we plan to apply CxA modeling. In-Stent
Restenosis involves a large number of biological and physical processes on many
spatial and temporal scales. Fig. 5 shows a simplified SMM for this process,
showing relevant physical processes (such as bulk flow, transmural diffusion)
and biological processes (such as cell signaling, inflammation and clotting) on
their (estimated) characteristic scales. We are currently in the process of defining
single scale CA or agent-based models for all processes, and once this is available,
we will cast this SMM into the form of Fig. 3 and 4.
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5 Discussion and Conclusions

The simulation of multiscale, multiscience complex systems are a central chal-
lenge in computationa science. Cellular Automata are a powerful framework to
model spatially extended dynamical systems. In order to cope with multiscale
and multiphysics, we have introduced Complex Automata as a set of interacting
CA’s. Together with a description of system components through a scale sepa-
ration map, CxA offer a flexible and intuitive framework to solve problems in
which several different physical processes at different spatial and temporal scales
interact.
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