An Agent-Based Coupling Platform for Complex
Automata

Jan Hegewald!, Manfred Krafczyk!, Jonas Télke!,
Alfons Hoekstra?, and Bastien Chopard?

! Technical University Braunschweig, Germany
{hegewald,kraft,toelke}@irmb.tu-bs.de
2 University of Amsterdam, The Netherlands
alfons@science.uva.nl
3 University of Geneva, Switzerland
Bastien.Chopard@cui.unige.ch

Abstract. The ability to couple distinct computational models of sci-
ence and engineering systems is still a recurring challenge when develop-
ing multiphysics applications.

The applied coupling technique is often dictated by various constraints
(such as hard- and software requirements for the submodels to be cou-
pled). This may lead to different coupling strategies/implementations in
case a submodel has to be replaced in an existing coupled setup.

Additional efforts are required when it comes to multiscale coupling.
At least one of the submodels has to be modified to provide a matching
interface on a specific spatial and temporal scale.

In the present paper we describe a generic coupling mechanism/frame-
work to reduce these common problems and to facilitate the development
of multiscale simulations consisting of a multitude of submodels.

The resulting implementation allows the coupling of legacy as well as
dedicated codes with only minor adjustments. As the system is being
build upon the JADE library, our platform fully supports computations
on distributed heterogeneous hardware.

We discuss the platform’s capabilities by demonstrating the coupling of
several cellular-automata kernels to model a coupled transport problem.

Keywords: generic coupling, heterogeneous, JADE, multi-scale, mutual
interactions.

1 Complex Automata

In order to be able to develop non-trivial computational models it is usually
an essential prerequisite to identify the major elements of the target simulation
system. In doing so, one can construct complex multi-science models and the
same elements can be used to start with the software design.

Each contributing sub-model may use a different modelling technique, such as
cellular automata (CA), a numerical kernel for PDEs or multi-agent based sys-
tems (MABS) (e.g. used for biomedical simulations [I]). In addition the models

M. Bubak et al. (Eds.): ICCS 2008, Part II, LNCS 5102, pp. 227 2008.
© Springer-Verlag Berlin Heidelberg 2008

228 J. Hegewald et al.

will most likely use varying abstractions of a shared item, e.g. different spatial
or temporal scales of a shared domain.

In this work the resulting combined model will be termed Complex Automata
(CxA) [2], a paradigm emerging from the EU funded project COAST [3].

2 Coupling Environment

The software design for a CxA should be able to inherit the concepts of the
involved sub-models very closely to allow for better maintenance and reusability.
This will result in separate software components for every sub-model, which have
to be coupled to build the complete CxA, instead of a monolithic code for each
individual CxA.

Since there is no limit to the number of sub-models (kernels) of a CxA, there
should be some kind of middleware or library to aid the development and mainte-
nance of complex CxA. This middleware should also embed the execution model
of the CxA approach, so the implementation of each kernel can focus on the
specific sub-model itself. This way we can easily exchange individual sub-model
implementations and the reuse of existing sub-model code is greatly simplified.

2.1 Core Implementation

Though our CxA middleware implementation, the Distributed Space Time Cou-
pling Library (DSCL), is a work in progress, we already have non-trivial CxA
simulations up and running. The major core modules of the DSCL are imple-
mented in the Java programming language. As of now, the library supports the
coupling of Fortran, C and C++ kernels, next to pure Java codes. Multiple lan-
guages may be freely intermixed within a single CxA. A setup is configured via
ASCII files which declare the CxA graph and the scale separation map (SSM).
Each vertex in the graph represents an involved sub-simulation (e.g. CA and
MABS) and the edges designate a sub-model coupling. The SSM describes the
different spatial and temporal scales of the individual sub-models [4].

Because each sub-simulation has its own controlling task (i. e. thread), a CxA
may run fully distributed in a distributes environment. Since the idea is to
keep each sub-simulation implementation unaware of the whole CxA layout, the
system can make use of distributed-memory environments. This is even possible
on heterogeneous hardware setups.

The thread control is done via the MABS middleware JADE [5], where the
threads belong to a software agent [6]. The JADE provides peer to peer message
passing functionality which is currently used for the communications along the
graph edges. A bandwidth comparison between JADE and MPICH MPI [7§]
is shown in Fig.[l These bandwidth measurements have been performed on a
Linux cluster, whose nodes (AMD 64, Debian) are directly connected via various
network interfaces. For these tests the 100 Mbit and 1000 Mbit channels have
been used where the nodes are connected via a Gbit capable network switch.
See also [9] for further scalability and performance tests regarding JADE.

An Agent-Based Coupling Platform for Complex Automata 229

MPICH2 via TCP
100Mbit

MPICH2 via TCP

1000Mbit message size [1000 bit]
[640
Il 6400
JADE via TCP
100Mbit
JADE via TCP
1000Mbit

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90
bandwidth efficiency

Fig. 1. Comparison of JADE and MPICH MPI bandwidth using TCP

MABS are well suited for building large software systems. Complex software
systems, like CxA, consist of several more or less tightly coupled subsystems
that are organized in a hierarchical fashion i. e. the subsystems can contain other
subsystems. It is argued that MABS is well suited to reduce the complexity of
building such software systems [I0]. The topic is influenced by ongoing research
in areas such as parallel and distributed discrete event simulation [I1] and object
oriented simulation [12].

2.2 Reusability and Coupling Interface

Since the connected kernels of a CxA have no information of the whole graph, we
can keep the kernel implementations separate from a specific CxA application.
This allows us to reuse the kernels in different CxA setups, even without the
need for recompilation. To achieve this, there has to be some coupling knowledge
where data transfer takes place at the coupling interfaces (edges). In the DSCL
these smart edges are called “conduits” which act as a kind of network (or local)
pipe with a data sink and a data source. In its simplest form such a conduit is
an unidirectional pipe and can pass data within a single machine or transfer it
across a network. For a generic coupling approach we have to map data from the
sending side to the required input format of the receiving kernel. This involves
scale mapping and also data conversion, if necessary. Using this technique it is
possible to connect a kernel k; to multiple kernels at runtime (ks, k3 .. .), which
may require different I/O data formats e.g. due to different scales required by
the sub-models.

230 J. Hegewald et al.

Another benefit of the conduits is the flexible substitution of kernels which
provide functionality for the same vertex in the CxA graph. If, for example, a
kernel ko is used to represent vertex v, the kernel may be exchanged with
another implementation kg g. This is even possible at runtime.

In order to reduce the effort to use legacy code as a participating kernel in a
CxA setup, each kernel remains full control over its main time-loop. All commu-
nication calls to the conduits are issued from the responsible kernel. Except for
booting, the kernel implementation does not need to provide a public interface.

We allow the CxA to influence the local time-loop execution of a kernel by
means of blocking calls from kernel to conduit. This can be compared to blocking
MPT send /receive calls which often can simply be replaced by the DSCL equiv-
alents (highlighted lines in Fig.Hl). The time-loop synchronization is implicitly
synchronized this way.

To make a kernel available for the DSCL, it has to be glued to a Java class
which is (derives from) a JADE agent (Fig.[2).

1 public class PseudoKernelWrapper extends CAController {
2

3 protected void addPortals() {

4 // add data inlets/outlets

5 addExit (reader = new ConduitExit (...));

6 addEntrance (new ConduitEntrance (...));

7 }

8

9 protected void execute () {

10 // launch kernel

11 bootKernel () ;

12 // done

13 }

14

15 private void bootKernel () {

16 // kernel main—loop

17 for (time = 0; !stop(); time -+= INTERNAL DT) {

18 // read from our conduit(s) at designated frequency
19 if (time % DT READ — 0)

20 data = read();

21

22 // process data

23

24 // dump to our conduit(s) at designated frequency
25 if (time % DT WRITE — 0)

26 write (data) ;

27 }

28 }

29 }

Fig. 2. Pseudo code of a kernel agent

An Agent-Based Coupling Platform for Complex Automata 231
3 Transport Problem Example

During the initial development phase, a testbed with two distinct simulation ker-
nels was developed from an originally single-kernel flow solver. This existing code
is a preliminary kernel to simulate river channel erosion and sediment transport
within a fluid flow. The solver uses a modified Lattice-Boltzmann automaton [13]
to simulate incompressible flow where terms to simulate buoyancy where added.
Currently the automaton works as a single monolithic solver on uniform grids.
The research done on this sediment-erosion-model is part of another research
project [14] and is written in the C+4 programming language.
Main elements of the simulation are:

advection of the sediment in the fluid

diffusion of the sediment in the fluid

sediment concentration in the fluid

morphological changes of the river channel (erosion, deposition)

t = 500 At

t = 10000 At

Fig. 3. Sediment concentration and boundary changes due to erosion

In Fig. B we show two different snapshots of such a simulation where the cur-
rent sediment concentration is displayed. Some parts of the bedrock are subject
to erosion (removal) of sediment, where in other areas deposition (adding of
sediment) takes place.

232 J. Hegewald et al.

To couple two distinct automata with the first prototype of the COAST cou-
pling mechanism, the existing sediment erosion kernel was taken apart into two
mutually interacting solvers: one Lattice-Boltzmann automaton to simulate the
fluid flow and a second automaton to simulate the sediment advection/diffu-
sion/erosion processes. Both kernels rely on the same uniform grid, so there is
no scale separation here [4].

The sediment solver depends on the current fluid velocity at each discrete
location, whereas the flow solver depends on the changing sediment boundary.
These two kernels where now coupled with the first implementation of DSCL.
Calculation results and integrity of the CxA implementation could successfully
be validated against the original monolithic solver.

Flow solver Sediment solver
1 for(t=1; t<=stepCount; t++)
2
1 for(t=1; t<=stepCount; t++) 3 if(stop()) break; // alternative
2 4
3 if(stop()) break; // alternative 5 // receive/get velocity
4 6 receiveVelocity (velocityBuffer);
5 // calculate flow solver results 7 unpackVelocityBuffer (
6 scale (...); velocityBuffer);
7 calcInCompressibleCollision (...); 8
8 addForcing (...); 9 // calculate sedi solver results
9 propagate (...); 10 scaleBeforeTRTCollisionSediment
10 setFs (...); (...);
11 11 calcTRTCollision (...);
12 // send/put velocity 12 propagateSediment (...);
13 fillVelocityBuffer(velocityBuffer); 13 setFsSedi (...);
14 sendVelocity (velocityBuffer); 14 depositionLB (...);
15 15 sedierosionLB (...);
16 // receive/get sediment boundary 16 toppling (...);
changes 17
17 receiveActive (activeBuffer); 18 // send/put sediment boundary
18 unpackActiveBuffer(activeBuffer); changes
19 19 fillActiveBuffer(activeBuffer);
20 receiveQs(qsBuffer); 20 sendActive (activeBuffer);
21 unpackQsBuffer(qsBuffer); 21
22} 22 fillQsBuffer (qsBuffer);
23 sendQs(gsBuffer);
24}

Fig. 4. Pseudo code of coupled sedi and flow kernels

4 Conclusion and Outlook

The Complex Automata Simulation Technique describes a method to couple
multi-science models in order to simulate multi-scale problems. To facilitate the
design and implementation of a coupled simulation software, we developed the
Distributed Space Time Coupling Library which implements the ideas developed
in the COAST project (i. e. CxA graph and scale separation map) using an agent
based approach. The library aims to provide a flexible and powerful way for
model developers to integrate new kernels as well as legacy code.

The different software kernels of a CxA are strictly separated which guarantees
their reusability for future CxA projects. This way CxA implementations may
evolve with upcoming (re)implementations of kernels (vertices).

An Agent-Based Coupling Platform for Complex Automata 233

Within the COAST project we will focus on the complex simulation of coro-
nary artery in-stent restenosis [I5] as a demonstrator application to validate
the CxA modeling concept and the coupling library. These first simulations will
include multi-science models from physics, biology and biochemistry, acting on
different spatial and temporal scales. The results of these simulations will be
subject to future publication.

References

1. Walker, D.C., Southgate, J., Holcombe, M., Hose, D.R., Wood, S.M., Neil, M.S.,
Smallwood, R.H.: The epitheliome: Agent-based modelling of the social behaviour
of cells. Biosystems 76(1-3), 89-100 (2004)

2. Hoekstra, A.G., Chopard, B., Lawford, P., Hose, R., Krafczyk, M., Bernsdorf, J.:
Introducing complex automata for modelling multi-scale complex systems. In: Pro-
ceedings of European Complex Systems Conference, European Complex Systems
Society, Oxford (2006)

3. Mission of coast — complex automata, http://www.complex-automata.org/

4. Hoekstra, A.G., Lorenz, E., Falcone, J.L., Chopard, B.: Towards a complex au-
tomata framework for multi-scale modeling: Formalism and the scale separation
map. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007.
LNCS, vol. 4487, pp. 922-930. Springer, Heidelberg (2007)

5. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology. Wiley, Chichester (2007)

6. Davidsson, P.: Multi agent based simulation: Beyond social simulation. In: Moss, S.,
Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 97-107. Springer,
Heidelberg (2001)

7. MPICH Home Page, http://www-unix.mcs.anl.gov/mpi/mpichl

8. Message Passing Interface Forum: Message passing interface (mpi) forum home
page, http://www.mpi-forum.org

9. Scalability and Performance of JADE Message Transport System, AAMAS Work-
shop, Bologna (2002)

10. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44(4), 35-41 (2001)

11. Fujimoto, R.: Parallel and distributed simulation. In: Winter Simulation Confer-
ence, pp. 122-131 (1999)

12. Page, B.: Diskrete Simulation. Eine Einfithrung mit Modula-2. Springer, Berlin
(1991)

13. Geller, S., Krafczyk, M., Tolke, J., Turek, S., Hron, J.: Benchmark computations
based on lattice-boltzmann, finite element and finite volume methods for laminar
flows 35, 888-897 (2006)

14. Stiebler, M., Télke, J., Krafczyk, M.: An Advection-Diffusion Lattice Boltzmann
Scheme for Hierarchical Grids (Computers and Mathematics with Applications)
(in press)

15. Mudra, H., Regar, E., Klauss, V., Werner, F., Henneke, K.H., Sbarouni, E.,
Theisen, K.: Serial Follow-up After Optimized Ultrasound-Guided Deployment of
Palmaz-Schatz Stents: In-Stent Neointimal Proliferation Without Significant Ref-
erence Segment Response. Circulation 95(2), 363-370 (1997)

http://www.complex-automata.org/
http://www-unix.mcs.anl.gov/mpi/mpich1
http://www.mpi-forum.org

	An Agent-Based Coupling Platform for Complex Automata
	Complex Automata
	Coupling Environment
	Core Implementation
	Reusability and Coupling Interface

	Transport Problem Example
	Conclusion and Outlook

