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A recent improvement of the lattice BGK model, based on a regularization of the pre-
collision distribution function, is applied to three dimensional Womersley flow. The accu-
racy and the stability of the model are essentially improved by using this regularization.
A good agreement with analytical Womersley solution is presented, as well as an im-
provement of the accuracy over standard L-BGK. Numerical stability of the scheme
for a range of Reynolds and Womersley numbers is also presented, demonstrating an
enhancement of the stability range of L-BGK for this type of flows.
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1. Introduction

The lattice Boltzmann BGK method (L-BGK)!2 has been actively applied for
simulation of fluid flows in many CFD applications, see e.g. Ref. 4, 5, 6, 7, 8, 9. How-
ever, it is known that L-BGK suffers from numerical instabilities at high Reynolds
numbers (Re). Several solutions have been proposed to improve the method in
this respect'®11, In this paper we follow another route, we choose to use the reg-
ularization scheme proposed by Latt and Chopard'. In this RL-BGK scheme, the
simulated kinetic variables are submitted to a small correction (the regularization),
after which they only depend on the local density, velocity, and momentum flux.
This correction is immediately followed by the usual L-BGK collision term. The
effect of the regularization step is to eliminate non-hydrodynamic terms, known as
"ghost variables”, and to enforce a closer relationship between the discrete, kinetic
dynamics and the macroscopic Navier-Stokes equation.
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We study the performance of the RL-BGK through a numerical simulation of
the time-harmonic Womersley'? flow for 3D geometries. Further, we analyze the
accuracy of the scheme by comparison of the simulation results with analytical
Womersley solution. We also present stability analysis of the model for the bench-
mark flows.

2. Regularized lattice Boltzmann model

In the L-BGK method, the dynamics of the discrete distribution function f; is
described by means of a relaxation to a local equilibrium term:

Fil@+ Gt +1) = fi(@ 1) = —w (£ED - £ 0,aE D), (1)

where the relaxation parameter w is related to the local fluid viscosity, here ¢; is a
discrete set of velocities. The evolution of the f’s, as described by Eq. 1 depends
only on the macroscopic particle density (p) and fluid velocity (%), and the off-
equilibrium values of the distribution functions, fz-(m@ = f; — fi(eq). This becomes
clear when the dynamics is cast into the following form:

F@+ 8t 1) = (1—w) f0(@ 1) + £79p(F, ), BT, 1)). 2)

It is well known that Eq. 1 can be related to the Navier-Stokes equation for a fluid
through a multi-scale, Chapman-Enskog expansion of the f;’s. This procedure uses

an approximation of the off-equilibrium term as fz.("eq) R fi(l), where
1 i
fi( )= _wég QiapOapug, 3)

In this expression, we have introduced the symmetric stress tensor Qo = CinCig —
284, defined in terms of the Kronecker symbol 6,4. Here ¢; is the weight factor of
corresponding lattice directions. Under the same approximation, the stress tensor
Hg},e@ =3, fi("e@ CinCig can be related to the velocity gradients as follows:

Hg;;fl) ~ H((xllg — —Cg/w(aa(puig) -+ aﬁ(pua))- (4)

The key idea of the regularized BGK model is to exploit the symmetries both of @
and 11" to express f"°? fully in terms of the stress tensor. Indeed, by using the
symmetry Qiog = Qige Fgs. 3 and 4 can be combined to obtain

1 t;
1 = 2erQuanllily. (5)

This concludes the derivation of the regularized BGK model. In this new model,
the term £™°? is replaced by £, and Eq. 2 becomes:

F@ 4t +1) = (1 —w) V@, ) + fE9p(2, 1), A, 1)) (6)

All the macroscopic variables, II, @ and p, are computed locally from the parti-
cle distribution functions f;. All the terms contained in Eq. 6 can be written out
properly so as to obtain a numerical model just as efficient as the original L-BGK.
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More details on the regularized LB model, and a discussion of its relation to
Multiple relaxation time (MRT) models, can be found in Ref. 12.

We compare the velocity profiles of the simulated flow with the analytical Wom-
ersley solution'®. For the accuracy measurements we define a simulation error (E;‘)
as

E |wen (2, t) — ugp (2, t)|
“7 Z S un(@ ] )

where uy (t) is the analytical Womersley solution'®, u,(¢) is the simulated velocity,
and T is the number of time steps per period. Here

2 2/2
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Uth =
where R is the radius of the tube, z is defined as z = r/R, w = QT” is the circle
frequency, Ae®™® is the pressure gradient driving the flow, ¢ stands for imaginary
unit, Jo is the zero order Bessel function and « is the Womersley number

o= g\g )

with D diameter and v viscosity. In the next section we show the obtained experi-
mental results and accuracy measurements.

3. Accuracy and Stability of RL-BGK

We use the three dimensional 19-velocity (D3Q19) model'* for time harmonic
flows'5. The fluid flow is quasi-incompressible in a straight tube with rigid walls.
On the walls we use Bouzidi boundary conditions (BBC)!® and bounce back on the
links(BBL). The test case presented here is a 36 x 38 x 38 tube with body force
driven flow and periodic inlet/outlet boundary conditions. We studied multiple test-
cases with a range of Reynolds (Re) and Womersley («) numbers. We compared
the velocity profiles for every 0.1 x T time-step with analytical Womersley solu-
tions and measured the Er according to Eq. 7. In Fig. 1 we show the comparison
of the velocity profiles for Re = 300, & = 16 and w4, = 0.1 (i.e. Mach number
Ma = 0.2) velocity case. From Fig. 1 we see that the agreement for the RL-BGK
scheme (right) is better in comparison with L-BGK (left). From our simulations we
observe that in case of BBC the improvement of accuracy is not as pronounced as in
case of BBL. For L-BGK in case of BBL the error Er = 9x 102 while for RL-BGK
Er = 3.2 x 1073, Table 1 lists Er for a range of Re and « for both RL-BGK and
L-BGK?°.

From Table 1 we can see that in case of BBL Er is approximately three times
smaller for the RL-BGK scheme. Thus, if we use the RL-BGK scheme aiming at the
same accuracy as L-BGK, the execution time will be lower by a factor of 1.7% ~ 5.
From our measurement we observe that the execution time of RL-BGK in compar-
ison with L-BGXK is larger by ~ 3% - 4%.
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Fig. 1. Comparison of velocity profiles of simulated (dots) L-BGK (left) and RL-BGK (right)
schemes with analytical Womersley (solid lines) solutions for flow in the tube with diameter D = 36,
a = 16 and Re = 300.

Table 1. Simulation error Er for a range of Re and o.

Re 50 100 600 1200 3050
RL-BGK

o= 0.003 0.004 0.005 0.02 0.05

a =10 0.003 0.003 0.005 0.01 0.03

a =16 0.002 0.003 0.004 0.01  0.02
L-BGK

a = 0.01 0.01 0.02 0.06 0.2

a =10 0.008 0.009 0.01 0.03 0.1

a =16 0.007 0.009 0.01 0.03 0.07

3.1. Numerical stability

Numerical stability of the L-BGK has been an issue for many authors'7:18:1%20 We

measured the numerical stability of RL-BGK scheme. In these measurements we fix
Ma for ©w = 0.1, and we push Re to its highest possible value for a range of «. For
a 3D tube we fix the diameter to D = 36 lattice points?’. We applied two different
boundary conditions: Bounce back on links (BBL) and BBC boundary conditions on
the walls. We also performed the same stability measurements on a real geometry,
a human abdominal aorta with D,,,, = 18, and BBL on walls for time harmonic
flow!®. We consider the simulation to be unstable when the total momentum in the
system diverges?°.

In Fig. 2 we compared the stability limits of L-BGK with RL-BGK for the
same simulation parameters. As we can see from Fig. 2 the regularized method is
more stable than L-BGK. In case of the tube with BBC boundary conditions the
improvement is not as obvious as in case of BBL. With the use of BBL boundaries,
RL-BGK simulations could reach a Reynolds number five times higher than L-BGK
on a stationary flow, and two times higher on time-harmonic flows. For abdominal
aorta the improvement is from three to four times.
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Fig. 2. Comparison of the threshold values of Reynolds number for RL-BGK(-e-)and L-BGK
(-x-) schemes for simple tube with D = 36 for BBC (—- —) and for BBL(_.), and abdominal aorta
with Dmge = 18 for BBL(——). The range of Womersley number is from 1 to 16 for umqez = 0.1.

4. Conclusion

We have presented numerical simulation results of time harmonic Womersley flow
in a 3D tube by applying the regularized L-BGK scheme. We compared the velocity
profiles from simulations with the analytical Womersley solution. We showed that
the accuracy associated with RIL-BGK is essentially higher than with L-BGK by
comparing the simulation errors. This implies that if we use the RL-BGK scheme
with the same accuracy as L-BGK the execution time will decrease significantly2°.
We also presented the stability measurements for the RL-BGK scheme where we
reached higher Reynolds numbers than in case of the L-BGK scheme. For a 3D
time-harmonic flow we achieved three to five times higher Reynolds numbers which
is comparable with the results obtained in Ref. 12 for 2D cavity flow. The algorithm
can be used to more efficiently calculate 3D time-harmonic flows like blood flow in
abdominal aorta.
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